

HCU-003-001308

B. Sc. (Sem. III) (CBCS) Examination

October/November - 2017

Mathematics: BSMT-301(A)

(Linear Algebra, Calculus & Theory of Equations)
(Old Course)

Faculty Code: 003

Subject Code: 001308

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70]

Instructions: (1) All questions carry equal marks.

- (2) All questions of **SECTION-A** carry equal marks and each question of **SECTION-B** carry 25 marks.
- (3) Write answer of each section in your main answer sheet.

SECTION - A

1 Answer the following short questions:

20

- (1) Define: Subspace of a vector space.
- (2) Examine whether $\{(1,0,0), (0,1,0), (0,0,0)\}$ is linearly independent or not.
- (3) "If W is a subspace of a finite dimensional vector space V and $\dim W = \dim V$ then W = V": True/False.

- (4) If W_1 and W_2 are two subspaces of a finite dimensional vector space V then $\dim(W_1 + W_2) =$ ______.
- (5) Define: Kernel of a linear transformation.
- (6) Let L(U, V) be the set of all linear transformations from a vector space U to a vector space V, dim U = m and dim V = n. What is dim(L(U, V))?
- (7) Define: Idempotent linear transformation.
- (8) Define: Eigen value of a linear transformation.
- (10) For which values of r the series $\sum_{r=0}^{\infty} r^n$ is convergent?
- (11) Examine whether the series $\sum_{n=1}^{\infty} \left(\frac{1}{n}\right)$ is convergent or divergent.
- (12) Examine whether the series $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots$ is convergent or not.
- (13) Determine an interval in which a positive real root of the equation $x^3 2x 5 = 0$ lies.
- (14) Write formula to find first approximation to the root of the equation f(x) = 0 using false position method.
- (15) Write iterative formula to find reciprocal of a positive number N using Newton-Raphson method.

- (16) State the condition for convergence of method of successive approximations.
- (17) Define: Node.
- (18) State condition for a curve y = f(x) to be convex downwards.
- (19) Write the formula to find radius of curvature for the curve represented by x = f(t), y = g(t), where t is a real parameter.
- (20) Curvature of any straight line is zero: True/False.

SECTION - B

2 (a) Attempt any three:

6

- (1) Prove that intersection of two subspaces of a vector space V is also a subspace of V.
- (2) Check whether the set $A = \{(1, 1, -1), (1, 0, 1), (1, 1, 0)\}$ is linearly independent or not.
- (3) Let U and V be two vector spaces over R. If θ and θ are zero vectors of U and V respectively then prove that:
 - (i) $T(\theta) = \theta'$
 - (ii) $T(-u) = -T(u), \forall u \in U.$
- (4) Find nullity of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined as T(x, y, z) = (x, x + y, y).

3

- (5) Test for convergence the series $1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$
- (6) State Rabbe's Test for convergence of a series.
- (b) Attempt any three:

9

- (1) Find coordinates of $3 + 7x + 2x^2 \in P_2(R)$ with respect to the basis $\{1 x, 1 + x, 1 x^2\}$.
- (2) Extend $A = \{(1, 1, 0), (2, 0, 0)\} \subset \mathbb{R}^3$ to form a basis of \mathbb{R}^3 .
- (3) Prove that $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(x, y, z) = (x y, y z, z x), \quad (x, y, z) \in \mathbb{R}^3 \quad \text{is a linear transformation.}$
- (4) If $T: R^3 \to R^2$, T(a, b) = (a, -b), $(a, b, c) \in R^3$ is linear transformation then find $[T; B_1, B_2]$, where $B_1 = \{(1, 1), (1, 0)\}$ and $B_2 = \{(2, 3), (4, 5)\}$ are basis of R^2 .
- (5) Examine convergence of the series

$$\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n} + \sqrt{n+1}} \right).$$

(6) Determine the interval of convergence of the series $\sum_{n=0}^{\infty} \frac{x^n}{n}.$

(c) Attempt any two:

- 10
- (1) Show that the set $V = (a, b) \mid a, b \in R, b > 0$ is a vector space over R under the operations $(a, b) + (c, d) = (a + c, bd), \text{ and } \alpha(a, b) = (\alpha a, b^{\alpha}).$
- (2) State and prove Rank-Nullity theorem.
- (3) Find eigenvalues of the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined as T(x, y) = (3y, 2x y) by considering the basis $B = \{(1, 0), (0, 1)\}$
- (4) Test for convergence of the series

$$\frac{1}{1\cdot 2\cdot 3} + \frac{1}{2\cdot 3\cdot 4} + \frac{5}{3\cdot 4\cdot 5} + \frac{7}{4\cdot 5\cdot 6} + \dots$$

(5) Test for convergence of the series

$$1 + \frac{x}{2} + \frac{x^2}{5} + \frac{x^3}{10} + \dots + \frac{x^n}{n^2 + 1} + \dots$$

Also find interval of-convergence (if exist).

3 (a) Attempt any three:

- 6
- (1) For $f(x) = x^3 6x^2 + 11x 7$, find f(1).
- (2) Find an equation whose roots are with opposite signs of the roots of the equation

$$x^3 - 6x^2 + 11x - 6 = 0.$$

- Check whether the function $f(x) = e^x$ is concave (3)upwards or concave downwards.
- If the curve $y = x^3 + ax^2 + bx$ has a point of (4) inflexion at point (3,-9) then find the values of a and b.
- (5)Find asymptotes parallel to coordinate axes for the curve $(x^2 + y^2)x - ay^2 = 0$.
- (6)Prove that origin is cusp for the curve $v^2 = 2x^2v + x^3v + x^3$.
- (b) Attempt any three:

9

- (1)Explain graphical method to find an approximate root of equation f(x) = 0.
- (2)Using Newton-Raphson method, find the value of $\sqrt{101}$ correct to four decimal places.
- (3)Obtain the transformed equation by diminishing the roots of the equation

$$x^4 + 3x^3 - 2x^2 - 4x - 3 = 0$$
 by 3.

- Prove that the curvature at any point on a circle is (4) constant.
- Find all the asymptotes of the curve (5) $y^3 - x^2 (6 - x) = 0.$
- (6)Find radius of curvature at origin of the curve $x^3 - 2x^2y + 3xy^2 - 4y^3 + 5x^2 - 6xy + 7y^2 - 8y = 0.$
- Attempt any two: (c)

10

Find an approximate real root of the equation (1) $x^3 - x - 11 = 0$ correct to three decimal places using bisection method.

- (2) Find an approximate real root of the equation $x\log_{10}x-1.2=0 \text{ correct to three decimal places using false position method.}$
- (3) Find an approximate real root of the equation $x^3-5x+3=0 \text{ correct to four decimal places using }$ Newton-Raphson method.
- (4) Find radius of curvature at any point on the curve $y^2 = 4ax$.
- (5) Find multiple points on the curve $x^3 + y^3 3x^2 3xy + 3x + 3y 1 = 0 \quad \text{and}$ determine its type.